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samples, then the width of the 033 reflexion must have 
the same trend. The correlation coefficient r = 0.79 for 
the width of the 011 and 033 reflexions confirms this 
to a large degree. 

Conelusions 

From our measurements of the form, position and 
half-height widths of reflexions from chrysotile asbestos 
fibres of different origins, the following results are 
shown: 

1. Within the limits of error there is no difference 
in the wall thickness and the mean diameter of the 
cylindrical lattice among our 15 samples. The average 
wall thickness was found to be 155 + 1 A, and the aver- 
age mean diameter less than 280 + 2 A, probably about 
234 + 1 A. (Confidence limits are equal to the estimated 
values of the r.m.s, deviation of averages.) 

2. From the form of reflexion there is strong evi- 
dence in favor of Whittaker's model of distribution of 
cylindrical azimuthal boundaries separating silica- 
brucite double layers. However, the form of reflexion 
031 suggests that there may be a reason for considering 
a model with less than the maximum number of cylin- 
drical azimuthal boundaries per elementary fibre, per- 
haps similar to the one dealt with in TF1, Fig. 5(b). 

3. The most interesting feature is the presence of 
axial disorder which causes the equatorial reflexion of 

both hOl and Okl types to display larger 'particle size' 
than the higher layer line reflexions. There is an indi- 
cation of a correlation in the number of the cylindrical 
axial boundaries and the planar axial boundaries in 
our samples. We believe that the dark radial lines on 
the electron micrographs in the paper of Maser, Rice 
& Klug (1960), Figs.2(c) and 3, confirm our finding 
of the presence of planar boundaries. 

4. We could find no apparent close correlation be- 
tween tensile strength and type or number of misfit 
boundaries, which suggests that interfibre binding may 
be an important factor in tensile strength. 

The authors wish to acknowledge the financial sup- 
port of the National Research Council of Canada 
(Operating Grant A-165) and the Nicolet Industries, 
and wish to thank Mr Albert Winer, Dr A. A. Hodgson 
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The information which can be obtained about the shape of crystal atoms by X-ray diffraction is studied 
in light of a model calculation. The electron density of an atom is treated as a Fourier invariant ex- 
pansion in terms of harmonic oscillator wave functions adapted to the crystal symmetry. Definite limits 
for the observability of the terms are set by the experimental cutoff in sin 0/2, and by the volume of the 
atom. As a consequence, details smaller than a critical size cannot be seen either in the electron density 
or in the atomic factor. Experimental errors are such that the atomic factor rather than the electron den- 
sity reveals the significant deformations. Termination effects are studied in a model crystal: deforma- 
tions are inserted and a truncated set of structure amplitudes is analysed. Here series were used for the 
radial coefficients o~,fi in the harmonic expansions 2;oz(r)zK(O, ~o) and 2;fi(b)K~(O, ~o) for the electron den- 
sity and the scattering factor of a sphere. The radial scattering factors are well reproduced up to the 
cutoff value of the reciprocal vector, while a fair representation of the radial densities can be reached 
only by a long series. The termination does not significantly mix components with different angular 
behaviour. Reasonable contributions from neighbouring atoms have no major effect on the radial 
scattering factors or densities. Therefore the factors f~ calculated for a slightly 'too large' sphere will 
lead to a proper interpretation of the electron distribution in terms of deformed atoms. 

1. Introduction 

The concept of atomic deformation refers to the idea 
that we are analysing the structure of the crystal in 
terms of separate atoms. Actually it is surprising how 

well the separate atom model works in spite of the 
interactions between the atomic electrons in the solid 
state. Still to day almost all experimental diffraction data 
on crystals can be explained by models built from free 
atoms vibrating about their lattice sites. Only  recent 
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improvements in experimental technique have been 
able to show deviations from such models. However, 
as Cochran (1961) has noted, care is needed in talking 
about single atoms in the solid state. One needs some 
practical definition for this concept, and definitions 
which are reasonable in different connexions need by 
no means be identical. In connexion with X-ray dif- 
fraction work the definition of an atom must be based 
in the first place on the electron density function 

1 
•(r)= T/L" Fj exp ( -  2rcibj. r ) ,  (1) 

since the experiments refer to it giving more or less 
directly the Fourier coefficients F~. In real crystals there 
are always parts of the electron distribution, such as 
local bonds or metallic electrons, which cannot be 
uniquely shared among the atoms. Only in an ideal 
ionic crystal would there be no uncertainty in dividing 
it into atoms. 

To be physically reasonable the definition of a crystal 
atom must have certain locality. It is obvious that the 
distribution peak which corresponds to a certain atom 
will be the main contents of that atom. It is also 
reasonable to attach the entire peak to that atom 
since the overlapping of peaks due to thermal 
motion is normally very small, and it would be sense- 
less to attach electrons in the immediate vicinity of 
one nucleus to another atom. The possible definitions 
can therefore differ only in the way in which the dis- 
tribution between the peaks is treated. Also by defor- 
mation we mean in this connexion deformation of these 
distribution peaks, without any reference to its physical 
origin. 

The proposition that the atom be understood as the 
contents of a suitable region represents a limiting case 
in its exaggeration of locality. Its mathematical sim- 
plicity makes it, however, sometimes rather useful 
(Kurki-Suonio, 1959, 1962). In ionic crystals, where 
the electron density often falls to very small values be- 
tween the ions, all reasonable definitions of the atoms 
must be practically equal. Also this idea is certainly 
as correct as any other definition. The situation is dif- 
ferent in the case of metals and covalent bonds. The 
uncertainty - or freedom - in the definition is con- 
siderable, and the strict local separation will be a rather 
superficial limiting case among the possibilities. Some 
overlapping atom models, such as those used by Daw- 
son (1967b, c,d) to explain the covalent bond in dia- 
mond and related substances, will then be more natural. 
The justification of such divisions of the distribution 
into separate atoms lies, however, merely in their suc- 
cess in describing the situation in simple terms. 

A risk in another extreme is hidden in the traditional 
separation of structure amplitudes into atomic scat- 
tering factors. It is included in the mathematical state- 
ment of Hosemann & Bagchi (1962), that any set of 
experimental structure amplitudes can be explained in 
terms of spherical 'atoms', except possibly coincident 
reflexions. Also, we get information only at a finite 

number of discrete points in reciprocal space and the 
values of atomic factors everywhere else can formally 
be chosen at will. If applied uncritically this can lead 
to quite absurd definitions of the atoms, e.g. distant 
parts of a distribution may get attached to the same 
atom. The cutoff is one aspect of this question causing 
essential limitation of the experimental information. 
It is, however, possible to define a limited class of 
physically reasonable residual terms (Kurki-Suonio, 
1962). The non-unique interpretation of the structure 
amplitudes in terms of atomic factors and the appar- 
ently arbitrary behaviour of atomic factors between 
the reciprocal lattice points form a more sophisticated 
problem. Actually, they are just an expression of our 
uncertainty about how the crystal atoms should be 
defined. Again the general physical knowledge about 
atoms will be rather restrictive. Particularly we shall 
demonstrate in § 3 that the volume of atoms will es- 
sentially limit the reasonable choice of the atomic fac- 
tors. An exhaustive interpretation of structure ampli- 
tudes in terms of spherical atomic factors may there- 
fore prove impossible even though no coincident re- 
flexions have been measured. This is the formal basis 
which makes it reasonable to speak of non-sphericities 
of the atoms. 

Doubts have been expressed to the effect that the 
atomic deformations are such fine details of the struc- 
ture that the information about them just cannot be 
observed in diffraction data (e.g. Kitajgorodskij, 1957, 
1961). It is, however, not immediately clear what should 
be understood by 'details' in this connexion. The ex- 
perimental information is local in reciprocal space, and 
any effect which is large enough somewhere in the 
region b<beutoff will be seen. The complementarity 
relation between the locality in b space and the locality 
in r space causes local phenomena of b space to be 
widely spread in r space, and vice versa. An observable 
effect may well seem insignificant in real space and 
even large local effects in the electron density can be 
invisible in the scattering factors. The deformations 
occur in the outer shells of the atoms and they are 
rather large-scale phenomena. If enough electrons al- 
together take part in them they will certainly be ob- 
servable. 

For the present experimental technique the best res- 
olution seems to be about 0.1 electron per unit cell in 
simple crystals. In view of several theoretical scattering 
factor calculations, e.g. those of McWeeny (1951, 1952, 
1953, 1954), Freeman (1959), Weiss & Freeman (1959), 
Watson & Freeman (1961) and Dawson (1964b), one 
would expect displacements of this order to occur. In 
fact, this is also found in some cases where the proper 
analysis of experimental values has been performed. 
For instance, the analysis of Dawson (1967b, c) yields 
0.087 and 0.127 electron per bond, corresponding to 
0.35 and 0.51 electron per unit cell, taking part in non- 
spherical phenomena in diamond and silicon respec- 
tively. The results obtained by the group in Helsinki 
(e.g. Merisalo & Inkinen, 1966; J/~rvinen & Inkinen, 
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1967; Meisalo & Inkinen, 1967) for several ionic crys- 
tals also indicate phenomena of this order of magni- 
tude, as well as the work of Weiss & DeMarco (1965) 
and DeMarco & Weiss (1965) and some others. 

Thus, in general, we can expect to obtain informa- 
tion about such solid state effects from X-ray studies. 
Its presence in the data may, however, be difficult to 
observe. The deviations of structure amplitudes caused 
by the deformation need not be large in order to be 
significant as a whole. The information may be hidden 
in a complicated systematics of many small differences, 
perhaps only of the order of experimental error (cf. 
Kurki-Suonio & Meisalo, 1966). 

Proper methods of analysis are necessary for detec- 
tion and analysis of such information. Dawson (1967a) 
has recently emphasized the importance of improved 
methods of analysis to make possible the adequate 
separation of this information from experimental data. 
In subsequent papers (Dawson, 1967b, c ,d;  Dawson, 
Hurley & Maslen, 1967; Dawson & Willis, 1967) some 
examples of such an analysis are given. Earlier, one 
such method was proposed by the author (Kurki- 
Suonio, 1959, 1962) on account of the studies of Kor- 
honen (1953, 1955, 1956). Several applications (e.g. 
Merisalo & Inkinen, 1966; J/irvinen & Inkinen, 1967; 
Meisalo & Inkinen, 1967) have shown that it can un- 
ravel information which is difficult to observe by con- 
ventional methods. A more complete treatment of the 
problem will be possible by a new suggestion (Kurki- 
Suonio & Meisalo, 1967). 

The aim of this work is to elucidate more closely 
the nature of the information concerning deformations. 
Special attention will be paid to how the spatial bound- 
edness affects its nature and how the cutoff and finite 
accuracy of measurements restrict the information that 
can be obtained. For this purpose we constructed 
models for different types of deformation and studied 
to which extent they were reproduced by proper anal- 
ysis of a truncated set of structure amplitudes. 

2. The basic functions 

The angular dependence of atomic deformations is 
most properly treated in terms of spherical harmonics 
Kz(O, (O) adapted to the symmetry of the atomic posi- 
tion in the crystal, or lattice harmonics (Altmann & 
Cracknell, 1965; Altmann & Bradley, 1965). Their 
adoption is motivated by both mathematical and phys- 
ical arguments (Kurki-Suonio & Meisalo, 1967; Daw- 
son, 1967b, c ,d) .  Therefore we shall express the elec- 
tron density and the scattering factor of the atom as 
harmonic expansions 

0(r)= S Qt~,(r)Kl.(O,(o); f ( b ) =  X fl~(b)Kt~,(u,v) , (2) 

where l is the order of harmonics, ~ refers to the pos- 
sibility of having several independent harmonics of the 
same order, and r, 0, (O and b,u,  v are the spherical co- 
ordinates of the vectors r and b respectively. The suit- 

ability of this representation for diffraction analysis is 
especially emphasized by the Fourier invariance of the 
harmonics, which will establish a one to one corre- 
spondence between the terms of the two expansions (2). 
The radial functions in these expansion are related to 
each other through a Fourier-Bessel transformation 

f l~ (b)  = 4zci~ foQ,~(r)jz(2z~br)rZdr, (3) 

which depends only on the order l of the term. 
To describe different types (l, v.) of deformation we 

still need a proper set of radial functions. They can 
be taken somewhat arbitrarily, as stated by Dawson 
(1967b), mathematical simplicity being the main crite- 
rion. 

The harmonic oscillator wave functions seem to be 
a most natural choice. They simplify the treatment of 
our problem essentially because of their Fourier in- 
variance, which is stated by the theorem: 

An arbitrary eigenfunction 

g/ n = a3/2g(ar) 

of the Schr6dinger equation 

V2~ , + a2(2E - a2r2) p ' = 0 

with the eigenvalue E = n + ~, has the Fourier transform 

= I ~n exp (2rcib. r)d3r= inA3/2g(Ab) ,  (on 

where A a  = 2re. 
We can now take the eigenfunctions separated in 

spherical coordinates and adapt the angular depen- 
dence to the symmetry needed. In this way we arrive 
at the functions 

Ont(r)=cRnl(ar)Kz(O,(o),  n=/ ,  l+2 ,  l+4 ,  . . .  , (4) 

where Ks is a lattice harmonic of order l and 

Rnl (x )  = x Z exp (-~212hL l+~r (v-2'~ ( 5 )  
.,v / J ~ n -  Dk ~ ] ' 

where the functions Lkm are the associated Laguerre 
polynomials 

d m 
Lkm(X) = 1 eZx_ • (e_zxm+~) 

W .  - d ~ -  • 

If (4) is taken to be a contribution to the electron 
density of the atom, the corresponding contribution 
to the scattering factor will be, according to the in- 
variance theorem 

A t ( b )  = i nzRn~(Ab)Kz(u,  v); 
Z=c(2~z)3/2/a 3, A =  2rc/a . (6) 

Thus we have different sets of radial functions Rn~ for 
different angular dependences Ks(O, (O). To avoid con- 
fusion we shall call l the type and l ( n - l ) ,  within each 
type, the order of deformation. 

It should be noted that this invariance theorem in- 
cludes the Fourier invariance of the spherical har- 
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monics as well as the invariance of the radial functions 
Rnt under the Fourier-Bessel transformation (3) in the 
form 

(jz)nz=4rca3/Z loRnt(ar)jt(2rcbr)rZdr= 

(-- 1)~(n-t)A3/ZRnz(Ab) . 

To see more closely the nature of the basic radial 
functions Rnz a set of them is shown in Fig. 1. They 
are given in the form ZnzRnt(~r2~x) which is a true 
invariant of the /th radial transformation, except for 
the phase factor. Therefore the curves serve also to 
illustrate the properties of the transformation. For 
each type and any constant a the functions Rnz(ar), 
n=l, l + 2 , / + 4 ,  . . .  form a complete orthogonal set 
of radial functions. They bear the usual characteristics 
of such sets, the ½(n- l )  nodes due to the zeros of the 
Laguerre polynomials. The Gaussian factor dominates 
at large values of the variable and causes the functions 
to approach zero strongly. The pure Gaussian form 
is just a special case with n = / = 0 .  The locality of the 
deformation is defined more closely by the parameter 
a. With a suitable choice of it we can restrict the de- 
formation to the region desired. 

It is a well known property of the Fourier transfor- 
mation that all changes which diminish the smoothness 
of the functions will cause their transforms to extend 
wider, and vice versa. This is also evident from the 
behaviour of the functions (4) and (6). If we let a in- 
crease in order to compress the deformation into a 
smaller region, the corresponding radial scattering fac- 
tor will stretch farther according to the relation aA = 2~. 
The order of the function determines the rate of radial 
oscillations, the larger n the more oscillations. As a 
consequence, the scattering factors of deformations 
with higher n extend farther, if deformations lying in 
the same region are compared. The angular oscillation 
depends on the type of the function, and it has a similar 
effect. This is seen directly from Fig. 1, where curves 
of equal order and different types are compared (cf. 
Fig.3 of Dawson, 1967b). When l increases the range 
of the deformation grows in both spaces simultane- 
ously. Numerically this is demonstrated for instance 
by the rule 2rcrzbz = l for the maxima rt and bt of the 
zero order deformation Ru(ar) and its transform 
Rn(Ab) respectively. 

3. Limitations of observability 

Now that we have fixed the basic functions, we can 
handle the electron density and the scattering factor 
of the atom as expansions in terms of these functions. 
Particularly in this case we have a Fourier invariant 
division of the atom into components (4) or (6). The 
restrictions caused by the locality of the atom and the 
experimental limitations on the obtainable information 
can now be seen by studying them for the different 
components separately. 

First we note that a component n, l can evidently be 
observed and identified only if a sufficient part of even 
its last oscillation lies both below the cutoff in recip- 
rocal space and inside the atomic region in real space. 
On account of the transformation properties discussed 
above, this criterion will allow only the first few com- 
ponents to be observed. This situation can also be 
understood to arise from two simultaneous restric- 
tions. First, as known, the cutoff sets up a lower limit 
for the wavelength of oscillations, or more generally, 
for the dimensions of details, which can be observed 
in the electron density. Quite analogously the radius 
R of the atomic region defines a lower limit for details 
which can occur in the atomic scattering factor. There- 
fore only those few terms of the form (4), (6) can occur, 
the wavelength of which is long enough in both spaces 
at the same time. 

The upper limits of n and l depend on beutofr and the 
radius R of the atomic sphere. These limits are not 
sharp, since the criterion is not accurate. Rather, the 
significance of the components is reduced by and by 
with increasing n and l. A better idea of this limitation 
can be obtained if one lists for instance all compo- 
nents which have their last maxima or minima in the 
desired regions. If this point is denoted by Xnz for the 
function Rnz in Fig. 1, then all components will be ac- 
cepted for which X~l<Rbeutoff. Other components 
either do not exist in the region of that atom or they 
cannot be observed because of the cutoff. 

The non-spherical components represent in this for- 
malism angular displacements of electrons as com- 
pared with the average spherical electron density. The 
preferred directions are given by the maxima of the 
corresponding harmonic function. The limitation of l 
means that components which describe the angular 
behaviour in too much detail, i.e. components having 
many maxima and minima, cannot be observed. If we 

/=0 1 2 3 4 6 8 10 

n=/+2 

I i i x 

0 0"5 1 "0 1 "5 2"0 

Fig. 1. Fourier invariant radial functions ZnzRnt(l/2-~x). 
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consider, for instance, a measurement by Cu radiation, 
we have beutoff ~ 1"2 ~-1. For an atom of medium size, 
with a radius R-- 1.2 to 1.5 A, we then find from Fig. 1 
that components with l>  8 are absolutely not observ- 
able. Also from a physical point of view the compo- 
nents with higher l are not expected to have any signi- 
ficance, since a component of type l can be caused only 
by valence electrons with angular momentum quantum 
number at least ½l. For instance, a K8 type deformation 
would provide the presence ofg  states, which in general 
are not expected to occur in significant extent. 

The limiting order is different for different types. It 
determines the minimum size of details which can be 
seen in the radial behaviour of the electron density and 
the scattering factor of the corresponding type of de- 
formation. The wavelength of Rnz will give a rough 
measure of it. In our example, no details at all can be 
seen in the components with l>  3, for which only the 
zero order (n=l )  is possible. Even for the spherical 
case ( l= 0) only the first three orders can be significant. 

f3(b) 
0"2i 1 2 3 

0"5 .1.1 "0 1 '5 210 A -1 
typical standard deviations 

p3(r) 0"5 "0 1 "5 2"0 A 

0'2 3 ~ " 

Fig.2. The radial scattering factors and the corresponding 
radial electron densities of some K3 type deformations with 
equal observability. A typical experimental uncertainty is 
indicated by an error bar. 

01(') 
0"I [ n ~  

... 0"5 1 "0 1 "5 2"0 A 

0.5 f,(b)/.P \ 

/ / 0 0.1[j/j  
0"5 1 "0 1 "5 2'0 A -1 

Fig. 3. The radial electron densities and the corresponding 
radial scattering factors of deformations with different an- 
gular behaviour and with equal apparent strength and range 
in real space. 

This means that the details of the average spherical 
behaviour are invisible if they are smaller than about 

1 ½R___ 0"4A in real space or smaller than xbeutof~-~ 0"4A -1 
in reciprocal space. This means a strong restriction of 
possibilities to adapt spherical atomic factors to a given 
set of structure amplitudes. The atomic factor curves 
are 'stiff' and cannot be bent at will. This is why it 
may certainly be unnatural to interpret structure am- 
plitudes by means of merely spherical atomic factors. 

Thus, in general, it will not be realistic to search for 
much more than just the zero order term of each ob- 
servable type of deformation. This will be enough for 
stating the existence of the component with certain 
angular dependence and for obtaining some parameters 
corresponding to Z and A of the function j~z(r). The 
first one will be a kind of strength of the deformation, 
which should be related to the number of electrons 
participating in the angular displacements, and the 
other one will be connected with its effective range. 
These results will certainly be independent of the par- 
ticular set of basic radial functions used, e.g. the func- 
tions used by Dawson (1967b, c,d) in his analysis of 
diamond, silicon and germanium are therefore equally 
justified. Further details of the radial behaviour can 
scarcely be significant. Thus, the conclusions of Daw- 
son very likely exhaust the information about the shape 
of the atoms included in the experimental structure 
amplitudes. 

The limited accuracy is not yet explicitly included 
in these considerations. Qualitatively, its effect will be 
to prevent the observation of tiny components. Since 
the experimental information lies primarily in recip- 
rocal space this restriction refers more directly to the 
atomic factor representation of the deformations. It is 
reasonable to assume that the observability of a com- 
ponent means that its scattering factor fnz(b) must 
exceed some minimum value. If the accuracy of the 
experimental structure amplitudes is, say, +_ 0.1, then 
a component with a maximum 0.2 will certainly be 
significant. This will allow certain local inaccuracies 
roughly of the order of 0.1 A -3 in the corresponding 
electron densities. Fig.2 shows as an example defor- 
mations of type l--3 with equal observability, repre- 
sented in terms both of the atomic factors and of the 
electron density. These curves demonstrate very clearly 
that effects of equal magnitude in reciprocal space may 
seem to have very different significance if studied in 
real space. Obviously, a significant deformation may 
even be difficult to observe and it may easily be over- 
looked on inspection of the density maps. Moreover, 
this situation is expected to occur often, since the de- 
formations appear in the outer part of the atomic 
region, and the radial densities Onz with their maxima 
in this region are the flattest ones. We come therefore 
to the conclusion that the analysis of deformations 
must be performed in reciprocal space, as far as pos- 
sible, if we are to be able to judge their significance. 
The density maps serve then for useful visualization 
of the results. 
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Fig. 3 demonstrates another aspect of the meaning 
of the finite accuracy. It represents zero order (n = l) 
deformations of different types, concentrated at a def- 
inite distance and having an equal apparent strength 
in real space. Their scattering factors are seen to lose 
their significance very rapidly with increasing l. Now, 
we expect from physical arguments that the deforma- 
tions with higher l will, moreover, be much weaker 
than those with low l. The experimental errors will 
therefore be rather effective in hiding the deformations 
of higher l, even though the geometrical conditions 
discussed above should allow their observation. 

4. Termination effects 

The structure amplitudes Fj, or the Fourier coefficients, 
define the electron density of a crystal uniquely. The 
experimental cutoff will reduce this information, but 
most of the termination effects can be eliminated by 
using difference series, which is equivalent to taking a 
theoretical residual term (see e.g. Lipson & Cochran, 
1957). The philosophy behind the difference methods 
is also discussed by the author (Kurki-Suonio, 1962). 
The information we are looking for will be found by 
studying the Fourier series (1) in the region of the atom. 
For simplicity we shall consider a spherical region. 
This is practical, because the radial coefficients f~(b) 
of the series (2) for the contents of a sphere can be 
expressed in an analytic form in terms of the structure 
amplitudes (Kurki-Suonio & Meigalo, 1967; Kurki- 
Suonio, 1967). In a difference series calculation this 
includes the assumption that outside the sphere the 
theoretical atom is correct, i.e. the overlap of atoms 
is properly described by the model. If this is true, the 
differences inside the sphere represent the deformations 
of the atom. (This is certainly not the case, if a con- 
siderable amount of covalent bonding is present and 
if the model atoms are spherical, as usual. We shall 
return to this question in the next section.) 

To see the effect of the residual term on the infor- 
mation concerning atomic deformations we performed 
the following calculations. For simplicity we took a 
simple cubic crystal. Each atom is then in a cubic field 
and the angular factors Kz(O, q~) in (2) are just the g- 
type cubic harmonics of yon der Lage & Bethe (1947). 
All components with odd l and l = 2  are identically 
zero, and in the lowest five orders l =  0, 4, 6, 8, 10 there 
is only one term in each (Betts, Bhatia & Wyman, 
1956). The radial coefficients •l and3q are given by the 
series 

4rc(-i)~ 
Qt=(r)-- VNt= I FjKz=(uj, v~)j~(2zcbz) (7) J 

first derived by Atoji (1958), and 

16~z 2 
fz=(b)- VNt= I; FjKt~,(uj, vj)Iz(2ztb, 2Tcb~ ; R) , (8) 

where 
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Fig.4. Termination effects in spherical components n= l=0  
and n = 2, l= 0 (a) in reciprocal space and (b) in real space; 
- - - - - -  the model function [0.3 R00(2b) and 0-2 R20(2b)]; 
. . . .  the spherical component as reproduced by the trun- 
cated series; . . . . . . .  non-spherical components due to termi- 
nation. The labelling of 0 curves refers to the numbering of 
cutoffs indicated by vertical lines attached to the scattering 
factor curves at b of the last term included. 
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R 

Iz(x,y;R)= f/t(xr)jt(yr)rZdr= 

R z 
xZ_ y 2 [xjz+l(xR)j~(yR)- yjl(xR)jl+l(yR)] 

and 

N,~,= I KT~,(O,~o)K,~(O,~o)d£2 
(4=) 

(Kurki-Suonio, 1967). If the notation of Kurki-Suonio 
& Meisalo (1967) is used for the cubic harmonics Kl 
we have C0=l ,  C4=32-8125, C6=2408.656, C8 = 
9258.691, C10=448736-96 for Cz=4rc/Nz. The lattice 
constant was chosen to be 2.6/~ and the radius of one 
atom R = 1.3 A. To simulate a difference series calcu- 
lation we assumed that the deviation of the atom from 
the theoretical one was represented by one of our model 
functions (4) and (6). The contributions of this defor- 
mation to the structure amplitudes were then calculated 
and used as coefficients of the series (7) and (8). To 
get a general view of the convergence properties this 
procedure was repeated for a whole set of different 
functions and with different cutoff limits. In each case 
Z was chosen to make the deformation observable as 
compared with a reasonable experimental accuracy and 
A was taken so that no significant parts of the defor- 
mation remained outside the atomic sphere. In this 
way we could check, how well the information lying 
inside a sphere will be reproduced in the analysis. 
Typical examples of the results are given in Figs. 4, 5, 6. 
The Figures (a) show the reproduction of the atomic 
factor components j%, J~ and f6 by truncated series (8). 
The Figures (b) show the corresponding curves Q0(r), 
Q4(r) and Q6(r). 

As a general observation we found that the termina- 
tion effects are of a very simple nature in the atomic 
factor calculations. The truncated series (8) tends to 
follow a function which is equal to the model 3q(b) up 
to the cutoff limit and zero beyond that, rounding off 
the discontinuity at bcutoff .This behaviour is observed 
already by a very small number of terms as indicated 
by the Figures. It can be understood by our earlier 
qualitative argument, that in this way the analysis is 
kept in reciprocal space, where the residual term is 
locally separated from the experimental information 
(Kurki-Suonio & Meisalo, 1967). As the only excep- 
tion we observe some piling up of cutoff error near the 
origin b =0  in the case of spherical deformations [see 
Fig. 4(a)]. 

The truncated series (7) gives a much worse approx- 
imation of the radial electr6n densities Q,(r). The ter- 
mination errors resemble those of the ordinary Fourier 
series and spoil the picture to a large extent. Only near 
the surface of the sphere is the representation somewhat 
more satisfactory. 

Another important and very useful property is that 
the termination does not mix different types of defor- 
mation significantly. This was controlled explicitly by 
calculating all radial functions Qz and J~ with l=  

0,4,6,8,10 for each particular model with the same 
cutoff limits as before. In every case all irrelevant com- 
ponents were negligible. The dotted lines in Figs. 4(a), 
5(a), 6(a) show all such components that can be seen 
at the scale used. In the electron density there were 
some more components which should have been visible 
in Figs.4(b), 5(b), 6(b). None of them has any true 
significance. 

We conclude that by series (8) the information about 
deformations inside a sphere can be extracted in the 
most pure form. If significant values of the difference 
series (8) are found for any type of deformation, then 
this component does exist (without any reference to 
its origin or interpretation), and the curve obtained 
gives a fair representation of its contribution to the 
atomic factor below the cutoff limit. Because of the 
termination effects it may, however, be impossible to 
conclude how far the components do extend beyond 
the cutoff. This is a mathematical point of view. Phys- 
ically one may argue that the deformations are such 
smooth phenomena in the rather wide region of the 
outer electron shells that all essential information about 
them lies at small b values. If one can rely upon such 
arguments, this uncertainty will not be so important. 
All components of about the same order of magnitude 
can be observed simultaneously. One dominant com- 
ponent may, however, prevent a reliable observation 
of the others, if the uncertainty about its continuation 
beyond the cutoff is large compared with the values 
of other components. This concerns especially com- 
ponents with neighbouring values of l. 

5. On the role of overlap 

The restriction of the considerations to the contents 
of a sphere is mathematically a very simple solution 
of our problem. The justification for this procedure is 
evident only if the reasonable division of the electron 
density into atoms does not provide considerable over- 
lap in addition to what is present in the theoretical 
model used. One will often meet cases where its appli- 
cability is not immediately clear. It may, however, be 
possible to find, even for covalent bonds, a simple 
interpretation in terms of separate deformed atoms. 
This is clearly demonstrated by the succesful analysis 
of the bonds in diamond, silicon and germanium (Daw- 
son, 1967b, c,d) which could be properly described by 
overlapping/(3 and/£4 components of the atoms. 

By use of the series (8) one can get a good picture 
of the contents of a sphere, as is shown in the preceding 
section. Therefore it will be useful to know how the 
overlapping components are reflected in the results of 
such an analysis. For this purpose we extended our 
studies to cases with considerable overlap. The same 
models were used as before, except for values of A 
which were chosen to produce a reasonable overlap 
of neighbouring atoms in the model crystal. In the 
light of Dawson's results and our considerations in § 3 
we believe that such models cover, well enough for 
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X-ray diffraction analysis, all cases where the density 
does not vanish between neighbouring atoms. 

Again we derived at first the structure amplitudes 
Fj corresponding to the model deformations. Then the 
different components around one atom were computed 
with the use of the series (7) and (8). In each case all 
structure amplitudes greater than 10 -5 were included; 
hence the results are well guarded against termination 
errors. In addition to the normal close packing radius 
R1=1"3 A we used a 'too large' radius R2 =1"5 A, 
which clearly extends to the region of the nearest 
neighbours but contains the model deformation more 
completely. 

Two cases, n = l = 4  and n = l = 6 ,  are presented in 
Fig. 7(a), (b) respectively as typical examples of the 
calculations. (Compare also Fig. 8 where a similar cal- 
culation is presented for the spherical case n = 2, l=  0.) 
The situation is shown both in reciprocal space and 
in real space. The radial behaviour j]  and Ot is given 
for the model deformations themselves and for all 
components of deformation arising from them in the 
crystal atoms, as far as they are visible in the scale of 
the figures. To get an idea of the extent of overlapping 
we show also the corresponding electron densities 
O(x, 0, 0) along the connecting line of two neighbouring 
atoms. 

Again, a general observation is that different types 
of deformation are largely independent. This can be 
seen both in 0z and in aft. The original behaviour of 
each component is well reproduced in spite of the over- 
lap. In reciprocal space the reproduction by the too 
large sphere is good. The smaller sphere is evidently 
somewhat too small compared with the range of the 
model deformations. Also, all irrelevant components 
are weak, especially inside the smaller sphere. But even 
in the larger one the mixing of components is not 
strong enough to produce any misleading features. 
The worst interactions are here between the same com- 
ponents as in the termination effects. Overlapping com- 
ponents with a definite l will produce weak deforma- 
tions with neighbouring values of l. Again the inter- 
action is strongest between l =  4 and l =  0. Especially, 
overlapping K4 components will make the number of 
electrons in the atomic sphere to increase, as is indi- 
cated by the rise of J~ at b = 0. These rather favourable 
properties can be explained by noting that the over- 
lapping concerns only a small solid angle, and each 
radial function represents the averaged behaviour in 
the full 4re solid angle. 

These results indicate that the method of calculating 
the scattering factor differences for a sphere can be 
useful also in cases with considerable amount of co- 
valent bonding. They also suggest that one should 
rather use 'too large' spheres in such an analysis to 
obtain the best result. The existence and approximate 
strength of different types of deformation can be de- 
tected in this way. 

By application of the same procedure to spherical 
components we wanted to find out to what extent non- 

spherical deformations of the distribution peaks can 
be caused by mere overlapping, since it has been sug- 
gested that this might be the only interpretation of such 
observations (Hosemann & Bagchi, 1962; Hovi, 1959). 
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Fig. 5. Termination effects in deformations n= l=4 and n = 6, 
1= 4 (a) in reciprocal space and (b) in real space; ~ - -  the 
model deformation [(0.1 R44(2"2b)) and 0.04 R64(1-8b)]; 
. . . .  the K4 component as reproduced by the truncated 
series; . . . . . . .  irrelevant components due to termination. 
The labelling of 0 curves refers to the numbering of cutoffs 
indicated by vertical lines attached to the f curves. 
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An example is given in Fig. 8. The results show that 
almost no aspherical features will occur without the 
presence of non-sphericities in the atoms themselves. 
Of course, the overlapping may be rather large in 
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Fig.  6. T e r m i n a t i o n  effects in d e f o r m a t i o n s  n = l =  6 a n d  n = 8, 
l= 6 (a) in reciprocal space and (b) in real space; - - - - - -  the 
model deformation [0.02 R 6 6 ( l ' 8 b ) a n d  0.006 R86(l'7b)]; 
. . . .  the /(6 component as reproduced by the truncated 
series; . . . . . . .  irrelevant components due to termination. 
The labelling of Q curves refers to the numbering of 
cutoffs indicated by vertical lines attached to the f curves. 

reality, when, for instance, some metallic crystal is 
built from free atoms. To check the validity of this 
conclusion we therefore calculated this effect also for 
theoretical Cu and Fe crystals using the Gaussian 
representations for their atomic factors (Kurki-Suonio, 
Meisalo, Merisalo & Peltola, 1966).* The structure of 
Cu is f.c.c, with a lattice constant dcu=3.608 A. Fe 
is b.c.c, with dFe=2'8664 A. A temperature factor of 
the form exp ( - B  sin20/). 2) was adopted with Bcu= 
0.4 A 2 and BFe=0"36 •2 corresponding to room tem- 
perature. In both cases the overlap is rather strong. 
As a measure we can use the amount of electrons 
coming from the neighbours to one atomic sphere. A 
direct calculation from the Gaussian expressions gives 
0-48 e in Cu and 0.85 e in Fe for close packed spheres 
with Rcu = 1.275 A and RFe = 1"24 A. If one then cal- 
culates the radial functions J~(b) for the first few cubic 
harmonics one finds that the maximum deviation of 
the strongest component f4 from zero is only 0.009 for 
Cu and 0.014 for Fe. If we take larger spheres, this 
number will naturally increase. Radii larger by 0.2 A 
lead to corresponding maxima of 0.033 for f4 in Cu 
and 0.051 in Fe, which still are only of the order of 
reasonable experimental error. In the light of these 
figures it seems obvious that non-sphericities discovered 
by the use of series (8) cannot be caused by mere 
overlap in any significant extent. 

6. Discuss ion  

It is clear that one must have an extraordinarily good 
set of experimental structure amplitudes up to a certain 
minimum cutoff, before the search for deformations 
will be reasonable at all. It is an experimental fact that 
the deformations are only tiny effects in the intensities. 
If this first condition is fulfilled there should in prin- 
ciple be no absolute obstacles for performing such an 
analysis for each atom separately. 

Our considerations strongly suggest that this anal- 
ysis should be done in terms of atomic scattering fac- 
tors. First, the experimental information lies primarily 
in the reciprocal space and its observability does 
not guarantee distinct effects in the electron density. 
Secondly, the convergence properties are much more 
favourable for scattering factor calculations than for 
the electron density, as shown in § 4. In the atomic 
factors one can really see the experimental information 
in a pure form, because the termination effects are 
concentrated in the vicinity of the cutoff. A series of 
the type (8) will be a suitable tool for such an analysis, 
at least if used as a difference series. The strict separa- 
tion of the atom, made in the derivation of the series, 
will not produce insurmountable difficulties in inter- 
pretat ion of the results, even if overlapping of 
atoms occurs, e.g. covalent bonding. The considera- 
tions of § 5 suggest the use of slightly too large spheres 
in this analysis. 

* N o t e  a mi sp r in t :  one  o f  the  p a r a m e t e r s  a~ for  Cu  s h o u l d  
be 0.09470 ins tead  o f  0-94701. 
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The simple nature of the termination effects is a 
remarkable advantage also for estimation of the accu- 
racy of results. Because of the approximate local sep- 
aration of experimental information and the residual 
term the significance of different atomic factor com- 
ponents below the cutoff is mainly determined by the 
experimental accuracy alone. For series (8) the effect 
of non-systematic errors can easily be handled by con- 
ventional methods. All systematic errors must, of 
course, be studied separately. It should be noted that 
many of them refer specially to the average spherical 
behaviour f0 and will therefore not essentially affect 
the reliability of non-spherical features. Errors which 
only depend on sin 0/2 certainly belong to this category. 
The independence of different types of deformation in 
termination means here a valuable simplification. Many 
sources of error affect the results also indirectly by in- 
creasing our uncertainty about the residual term or 
about the choice of theoretical atomic factors, e.g. the 
temperature parameters, in difference series calcula- 
tions. Now, however, since termination does not mix 
different types of deformation, the errors affecting only 
the spherical components cannot produce significant 
inaccuracies in the others, even through the residual 
term. This result is in accordance with our earlier state- 
ments (Kurki-Suonio & Meisalo, 1966). 

It is true that our considerations are rather limited, 
since only one particular case with a high symmetry 
is handled. Perhaps in lower symmetries there will be 
some more mixing of the neighbouring components in 

termination as well as in overlapping. If the equi- 
librium nuclear position of the atom is not determined 
by the geometry of the crystal, a stronger coupling will 
arise between even and odd components. This is a kind 
of phase problem. The even components constitute the 
symmetric part of the electron density and are due to 
the real parts of the structure amplitudes, while the 
odd ones correspond to the antisymmetric distribution 
or the imaginary parts. It is provided in the derivation 
of series (7) and (8) that the origin coincides with the 
centre of the atom. An uncertainty about the position 
of the atom leads to an uncertainty regarding the 
phases of the structure amplitudes used in these series. 
Dawson (1964a) has studied the nature of this inter- 
action and its consequences, pointing out that conven- 
tional methods of refinement are equivalent to an arti- 
ficial minimization of the antisymmetric distribution 
or the odd components and will therefore lead to 
erroneous parameters. The interactions between dif- 
ferent types of deformation will also depend on the 
positions of nearest neighbours. For instance, in an 
f.c.c, lattice the interaction between l=  6 and l = 0  will 
be somewhat stronger than in the simple cubic or b.c.c. 
lattices, simply because K6(0,p) has a deep minimum 
in the [110] direction. However, these differences be- 
tween different structures can be considered more or 
less as subtleties. They certainly do not affect the 
general features, which showed up in our example and 
which guarantee the usefulness of series (8) in analysis 
of deformations. 
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The physical interpretation or the origin of the fea- 
tures obtained is another question. The non-sphericities 
can be caused by real deformations due to electronic 
wave functions (McWeeny, 1951, 1952, 1953, 1954; 
Freeman, 1959; Weiss & Freeman, 1959; Watson & 
Freeman, 1961; Dawson, 1964b, etc). They may also 
be due to vibrations of the atom (Dawson, 1967a, b, c, d; 
Dawson, Hurley & Maslen, 1967; Dawson & Willis, 
1967). Finally, such effects can also be produced by 
some systematic errors, such as preferred orientation 
in powder measurements, which favour certain crystal- 
lographic directions. Therefore, one must be critical 
in judging the quality of the measurements. In any case, 
if something is observed which exceeds the limits of 
known experimental error, then the information is 
there, and its source must be found. 

The calculations in this work were performed with 
the Elliott 803 computer at the Department of Nuclear 
Physics of the University of Helsinki and partly with 
the Elliott 503 computer of the Finnish State Computer 
Centre. The necessary programs were written by the 
author in Algol. For spherical Bessel functions a special 
procedure of Gautschi (1964) was used. A straight- 
forward computation from recurrence relations would 
lead to exceptional piling up of rounding errors 
(Gautschi, 1967). A corresponding difficulty was not 
present in the calculation of associated Laguerre poly- 
nomials of the orders needed. 

It is a pleasure to acknowledge discussions with Dr 
Veijo Meisalo and Dr Pekka Suortti. I am also in- 
debted to Miss Pirkko Jokinen, M.Sc., Mrs Hilkka 
Riihim/iki, M.Sc. and Miss Terttu Erkkil/i for assis- 
tance. Financial support from the National Research 
Council for Sciences, Finland has made this work pos- 
sible. 
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Relativistic Hartree-Foek X-ray and Electron Scattering Factors 
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Kinematic X-ray and electron scattering factors, found with the use of relativistic Hartree-Fock 
atomic fields, are tabulated for 76 atoms and ions. Parametric fits to these are given in the range of 
sin 0/2 from 0.0 to 2.0 A.-1. A method is developed to obtain the electron structure factor for forward 
scattering for a crystal containing ionized atoms. 

Introduction 

A relativistic Hartree-Fock (R-HF)  atomic wave func- 
tion calculation has been programmed by Coulthard 
(1967). Results have been obtained by him and by the 
present authors for 76 atoms and ions. The calculation 
yields, among other data, the total charge densities Q(r) 
and atomic potentials ~0(r). F rom these, kinematic scat- 
tering factors for X-rays and electrons, fx(s) and fa(s), 
have been found by using the equations 

Ior20(r) fx (s)=4~ sin (4zcsr) 
(4zcsr) dr (1) 

and 

8~z2mOe lor2{o(r ) sin (4zcsr) 
fez(S)- hE (4zcsr)" dr, (2) 

where s = sin 0/2 A -1. "" \ .  

Equation (2) was used only for neutral  atoms. The 
case of ions will be dealt with separately. For asym- 
metric atoms, Harada & Kashiwase (1962) found 
sStofa(s) depends on the direction in which the limit 
is taken. A single value is obtained in the present case, 
since the atom is considered as being spherically sym- 
metrical. 

A brief comparison, for mercury, between the R - H F  
scattering curves and those found from some other 
atomic models has been given previously (Doyle & 
Turner, 1967). Work by several authors (see Byron & 
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Oxford, Parks Road, Qxford, E.ngl.and . . . . . . . . . . .  

Joachin, 1967a, b) has taken some account of correla- 
tions between electrons in the atom. However, since 
this deals only with a few light atoms, the present 
tabulation may prove useful. The inclusion of corre- 
lations might be expected to decreasefx(s) for medium 
s, and to increasefa(s) for small and medium s. Except 
for the lightest atoms, the most sophisticated tables 
previously available were those based on the non- 
relativistic Hartree-Fock model by Freeman (1959) for 
lighter atoms, and on the Dirac-Slater model (relativ- 

0 I 
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sin e/~, (A -1 ) 

Fig. 1. fNn(s.)rFfcl(s) for .(a).neutr.al and (b) ionized atoms. 


